Categorical g-actions for modules over truncated shifted Yangians

Joel Kamnitzer (University of Toronto)

10-Sep-2020, 20:30-21:30 (5 years ago)

Abstract: Given a representation V of a reductive group G, Braverman-Finkelberg-Nakajima defined a Poisson variety called the Coulomb branch, using a convolution algebra construction. This variety comes with a natural deformation quantization, called a Coulomb branch algebra. Important cases of these Coulomb branches are (generalized) affine Grassmannian slices, and their quantizations are truncated shifted Yangians. Motivated by the geometric Satake correspondence and the theory of symplectic duality/3d mirror symmetry, we expect a categorical g-action on modules for these truncated shifted Yangians. I will explain three results in this direction. First, we have an indirect realization of this action, using equivalences with KLRW-modules. Second, we have a geometric relation between these generalized slices by Hamiltonian reduction. Finally, we have an algebraic version of this Hamiltonian reduction which we are able to relate to the first realization.

algebraic geometrysymplectic geometry

Audience: researchers in the topic


M-seminar

Organizer: Rina Anno*
*contact for this listing

Export talk to